提出一种基于声阻抗测量,采用相关系数法对涂层的声压反射系数相位谱二元非线性方程进行双参数反演,同时确定涂层密度和纵波声速的方法。采用超声脉冲回波法,采集厚度为1.929 mm铝板和厚度为0.2~0.5 mm、掺杂质量百分比30%~50%铁粉的环氧树脂涂层的超声回波信号,在有效频带范围内采用相关系数法对试样理论和试验声压反射系数相位谱进行匹配分析,利用声阻抗条件约束相关系数矩阵,约束后的相关系数矩阵最大值对应的密度和纵波声速即为涂层的最优表征结果,纵波声速和密度的反演误差均在±3.2%以内。
所属栏目
科研成果与学术交流国家自然科学基金面上项目(51675083);国家自然科学基金重点项目(U1508218)
收稿日期
2018/3/31
作者单位
高剑英:大连理工大学 材料科学与工程学院, 大连 116024
张伟:大连理工大学 材料科学与工程学院, 大连 116024
马志远:大连理工大学 材料科学与工程学院, 大连 116024
赫丽华:中国航空发动机集团 北京航空材料研究院, 北京 100095
罗文:中国航空发动机集团 北京航空材料研究院, 北京 100095
林莉:大连理工大学 材料科学与工程学院, 大连 116024
雷明凯:大连理工大学 材料科学与工程学院, 大连 116024
联系人作者
林莉(linli@dlut.edu.cn)
备注
高剑英(1993-),男,硕士研究生,主要从事材料无损检测与评价工作
引用该论文:
GAO Jianying,ZHANG Wei,MA Zhiyuan,HE Lihua,LUO Wen,LIN Li,LEI Mingkai.Simultaneous Inversion of Density and Longitudinal Wave Velocity of Coatings Based on Ultrasonic Reflection Coefficient Phase Spectrum Matching Analysis[J].Nondestructive Testing,2018,40(10):39~44
高剑英,张伟,马志远,赫丽华,罗文,林莉,雷明凯.基于声压反射系数相位谱的涂层密度和纵波声速双参数反演[J].无损检测,2018,40(10):39~44
参考文献
【1】
宣天鹏. 材料表面功能镀覆层及其应用[M]. 北京:机械工业出版社, 2008.
【2】
胡传炘, 宋幼慧. 涂层技术原理及应用[M]. 北京:化学工业出版社, 2000.
【3】
侯进, 陈国华. 吸波剂含量和涂层厚度对微波吸收性能的影响[J]. 功能材料, 2007, 38(7):1064-1066.
【4】
ZHANG F F, KRISHNASWAMY S, FEI D, et al. Ultrasonic characterization of mechanical properties of Cr-and W-doped diamond-like carbon hard coatings[J]. Thin Solid Films, 2006, 503(1/2):250-258.
【5】
HESS P. Laser diagnostics of mechanical and elastic properties of silicon and carbon films[J]. Applied Surface Science, 1996, 106(1):429-437.
【6】
龚裕, 谭博涛, 宋国荣, 等. V(f,z)分析方法在小尺寸材料弹性常数测量中的应用[J]. 北京工业大学学报, 2012, 38(9):1298-1301.
【7】
陈剑. 基于超声显微镜的薄层材料多参量一体化定征关键技术研究[D]. 杭州:浙江大学, 2012.
【8】
BESCOND C, KRUGER S E, LÉVESQUE D, et al. In-situ simultaneous measurement of thickness, elastic moduli and density of thermal sprayed WC-Co coatings by laser-ultrasonics[J]. Journal of Thermal Spray Technology, 2007, 16(2):238-244.
【9】
BREKHOVSKIKH L. Waves in layered media[M]. New York:McGraw-Hill, 1957.
【10】
KINRA V K, IYER V R. Ultrasonic measurement of the thickness, phase velocity, density or attenuation of a thin-viscoelastic plate. Part Ⅱ:the inverse problem[J]. Ultrasonics, 1995, 33(2):111-122.
【11】
ZHAO Y, LI X M, LIN L, et al. Measurements of coating density using ultrasonic reflection coefficient phase spectrum[J].Ultrasonics,2011,51(5):596-601.
【12】
ZHAO Y, LIN L, LI X M, et al. Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method[J]. NDT & E International, 2010, 43(7):579-585.
【13】
MA Z Y, ZHAO Y, LUO Z B, et al. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum[J]. Ultrasonics, 2014, 54(4):1005-1009.
【14】
张伟, 马志远, 高剑英, 等. 考虑孔隙细观特征的热障涂层脱粘缺陷超声检测数值模拟[J]. 中国表面工程, 2017, 30(3):115-121.
【15】
张伟, 马志远, 赫丽华, 等. 基于声压反射系数幅度谱匹配分析的薄层厚度和超声纵波声速双参数反演[J]. 材料工程, 2016, 44(10):74-79.
【16】
MA Z Y, ZHANG W, DU P C, et al. Nondestructive measurement of elastic modulus for thermally sprayed WC-Ni coatings based on acoustic wave mode conversion by small angle incidence[J]. NDT & E International, 2017,94:38-46.
【17】
MA Z Y, ZHANG W, GAO J Y, et al. Characterization of the interface roughness of coatings based on ultrasonic reflection coefficient amplitude spectrum[C]//Atlanta:AIP Publishing, 2017.