具有纳米结构的金属氧化物由于纳米效应表现出了非常优异的气敏性能; 以维度为线索, 简要综述了零维、一维、二维和三维纳米结构金属氧化物气敏材料的制备方法和不同结构对其气敏性能的影响, 最后指出了未来该领域的研究和发展方向。
所属栏目
综述国家重点基础研究发展计划资助项目(2012CB619600); 国家科技部中法合作项目(2009DFA52410)
收稿日期
2011/12/232012/8/18
作者单位
位莉:上海交通大学金属基复合材料国家重点实验室, 上海 200240
苏慧兰:上海交通大学金属基复合材料国家重点实验室, 上海 200240
张荻:上海交通大学金属基复合材料国家重点实验室, 上海 200240
备注
位莉(1987-), 女, 河南郑州人, 硕士研究生。
引用该论文:
WEI Li,SU Hui-lan,ZHANG Di.Research Progress on Nanostructured Metal Oxides Used for Gas Sensing Materials[J].Materials for mechancial engineering,2013,37(1):5~9
位莉,苏慧兰,张荻.纳米结构金属氧化物气敏材料的研究进展[J].机械工程材料,2013,37(1):5~9
被引情况:
【1】
海参威,李文戈,尧巍华,张可敏, "表面活性剂SPAN80对水热法制备SrTiO
3粉体物相、形貌与极性的影响",机械工程材料
38, 65-68(2014)
【2】
由雪玲, "常见气体用金属氧化物气敏材料的研究进展",机械工程材料
39, 7-11(2015)
参考文献
【1】
GURLO A. Interplay between O2 and SnO2: Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen[J].Chemphyschem, 2006, 7(10): 2041-2052.
【2】
杨华明, 张科, 史蓉蓉, 等.介孔组装纳米TiO2催化材料的研究进展[J].机械工程材料, 2005, 29(4): 7-10.
【3】
宋也黎, 李国伟, 晋跃, 等.水热法合成花状MoS2纳米粉及其摩擦学性能[J].机械工程材料, 2011, 35(6): 49-52.
【4】
KENNEDY M K, KRUIS F E, FISSAN H, et al. Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties[J].Journal of Applied Physics, 2003, 93(1): 551-560.
【5】
SAHM T, MADLER L, GURLO A, et al. Flame spray synthesis of tin dioxide nanoparticles for gas sensing[J].Sensors and Actuators B-Chemical, 2004, 98(2/3): 148-153.
【6】
ZHU B L, XIE C S, ZENG D W, et al. New method of synthesizing In2O3 nanoparticles for application in volatile organic compounds (VOCs) gas sensors[J].Journal of Materials Science, 2005, 40(21): 5783-5785.
【7】
PINNA N, NERI G, ANTONIETTI M, et al. Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing[J]. Angewandte Chemie-International Edition, 2004, 43(33): 4345-4349.
【8】
NAYRAL C, VIALA E, FAU P, et al. Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing[J]. Chemistry-a European Journal, 2000, 6(22): 4082-4090.
【9】
HEIDARI E K, MARZBANRAD E, ZAMANI C, et al. Nanocasting synthesis of ultrafine WO3 nanoparticles for gas sensing applications[J].Nanoscale Research Letters, 2010, 5(2): 370-373.
【10】
KERSEN U, SUNDBERG M R. The reactive surface sites and the H2S sensing potential for the SnO2 produced by a mechanochemical milling[J].Journal of the Electrochemical Society, 2003, 150(6): H129-H134.
【11】
LIM S K, HWANG S H, CHANG D, et al. Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor[J].Sensors and Actuators B-Chemical, 2010, 149(1): 28-33.
【12】
ZHENG W, LU X, WANG W, et al. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers[J].Sensors and Actuators B-Chemical, 2009, 142(1): 61-65.
【13】
XU L, DONG B, WANG Y, et al. Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires[J].Sensors and Actuators B-Chemical, 2010, 147(2): 531-538.
【14】
PASHCHANKA M, HOFFMANN R C, GURLO A, et al. Molecular based, chimie douce approach to 0D and 1D indium oxide nanostructures: Evaluation of their sensing properties towards CO and H2[J].Journal of Materials Chemistry, 2010, 20(38): 8311-8319.
【15】
YIN Y X, JIANG L Y, WAN L J, et al. Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties[J].Nanoscale, 2011, 3(4): 1802-1806.
【16】
XI G, YE J. Ultrathin SnO2 nanorods: Template-and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties[J].Inorganic Chemistry, 2010, 49(5): 2302-2309.
【17】
LIAO L, ZHENG Z, YAN B, et al. Morphology controllable synthesis of alpha-Fe2O3 1D nanostructures: Growth mechanism and nanodevice based on single nanowire[J].Journal of Physical Chemistry C, 2008, 112(29): 10784-10788.
【18】
JING Z, ZHAN J. Fabrication and gas-sensing properties of porous ZnO nanoplates[J].Advanced Materials, 2008, 20(23): 4547-4551.
【19】
GURLO A, BARSAN N, IVANOVSKAYA M, et al. In2O3 and MoO3-In2O3 thin film semiconductor sensors: Interaction with NO2 and O3[J].Sensors and Actuators B-Chemical, 1998, 47(1/3): 92-99.
【20】
CHAISITSAK S. Nanocrystalline SnO2: F thin films for liquid petroleum gas sensors[J].Sensors, 2011, 11(7): 7127-7140.
【21】
DANDENEAU C S, JEON Y-H, SHELTON C T, et al. Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts[J].Thin Solid Films, 2009, 517(15): 4448-4454.
【22】
KANNAN S, STEINEBACH H, RIETH L, et al. Selectivity, stability and repeatability of In2O3 thin films towards NOx at high temperatures (≥500 ℃)[J].Sensors and Actuators B-Chemical, 2010, 148(1): 126-134.
【23】
VAEZI M R. SnO2/ZnO double-layer thin films: A novel economical preparation and investigation of sensitivity and stability of double-layer gas sensors[J].Materials Chemistry and Physics, 2008, 110(1): 89-94.
【24】
ABADI M H S, HAMIDON M N, SHAARI A H, et al. SnO2/Pt thin film laser ablated gas sensor array[J].Sensors, 2011, 11(8): 7724-7735.
【25】
JIA L, CAI W. Micro/nanostructured ordered porous films and their structurally induced control of the gas sensing performances[J].Advanced Functional Materials, 2010, 20(21): 3765-3773.
【26】
SHAO S, QIU X, HE D, et al. Low temperature crystallization of transparent, highly ordered nanoporous SnO2 thin films: Application to room-temperature hydrogen sensing[J].Nanoscale, 2011, 3(10): 4283-4289.
【27】
YANG P D, ZHAO D Y, MARGOLESE D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J].Nature, 1998, 396: 152-155.
【28】
WANG Y D, MA C L, SUN X D, et al. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route[J].Journal of Colloid and Interface Science, 2005, 286(2): 627-631.
【29】
HAYASHI M, HYODO T, SHIMIZU Y, et al. Effects of microstructure of mesoporous SnO2 powders on their H2 sen-sing properties[J].Sensors and Actuators B-Chemical, 2009, 141(2): 465-470.
【30】
TIAN B, LIU X, SOLOVYOV L A, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures[J].Journal of the American Chemical Society, 2003, 126(3): 865-875.
【31】
WALTZ T, BECKER B, WAGNER T, et al. Ordered nanoporous SnO2 gas sensors with high thermal stability[J].Sensors and Actuators B-Chemical, 2010, 150(2): 788-793.
【32】
ZHANG X L, QIAO R, KIM J C, et al. Inorganic cluster synthesis and characterization of transition-metal-doped ZnO hollow spheres[J].Crystal Growth & Design, 2008, 8(8): 2609-2613.
【33】
ZHANG J, WANG S, WANG Y, et al. NO2 sensing performance of SnO2 hollow-sphere sensor[J].Sensors and Actuators B: Chemical, 2009, 135(2): 610-617.
【34】
MO M, YU J C, ZHANG L Z, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres[J].Advanced Materials, 2005, 17(6): 756-760.
【35】
LIU J, LUO T, MENG F, et al. Porous hierarchical In2O3 micro-nanostructures: Preparation, formation mechanism, and their application in gas sensors for noxious volatile organic compound detection[J].Journal of Physical Chemistry C, 2010, 114(11): 4887-4894.
【36】
DONG Q, SU H, XU J, et al. Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films[J]. Sensors and Actuators B-Chemical, 2007, 123(1): 420-428.
【37】
SONG F, SU H, HAN J, et al. Controllable synthesis and gas response of biomorphic SnO2 with architecture hierarchy of butterfly wings[J].Sensors and Actuators B-Chemical, 2010, 145(1): 39-45.