在650℃、120~145 MPa条件下对P92钢光滑试样和双缺口试样进行了蠕变试验,基于Liu-Murakami和Norton-Bailey本构模型,建立了一种修正的蠕变本构模型并加以验证;在此基础上,明确模型常数的确定方法,并对P92钢光滑试样和双缺口试样的蠕变行为进行了模拟。结果表明:修正后的模型可以有效地模拟P92钢650℃蠕变的三个阶段,缓解了传统Kachanov-Robotnov(K-R)模型对网格敏感性的问题;双缺口试样的蠕变断裂寿命均远大于相同条件下光滑试样的,即存在缺口增强效应,且缺口锐度越大,缺口增强效应越明显;损伤量与多轴度之间存在正相关性。
所属栏目
物理模拟与数值模拟国家自然科学基金资助项目(51134016);中央高校基本科研业务费专项资金资助项目(2014XS21)
收稿日期
2016/6/132016/12/26
作者单位
常愿:华北电力大学能源动力与机械工程学院, 电站设备状态监测与控制教育部重点实验室, 北京 102206
徐鸿:华北电力大学能源动力与机械工程学院, 电站设备状态监测与控制教育部重点实验室, 北京 102206
蓝翔:华北电力大学能源动力与机械工程学院, 电站设备状态监测与控制教育部重点实验室, 北京 102206
备注
常愿(1987-),女,河北石家庄人,博士研究生。
引用该论文:
CHANG Yuan,XU Hong,LAN Xiang.Building and Validation of a Multiaxial Creep Constitutive Model for P92 Steel[J].Materials for mechancial engineering,2017,41(2):112~118
常愿,徐鸿,蓝翔.P92钢多轴蠕变本构模型的建立及验证[J].机械工程材料,2017,41(2):112~118
参考文献
【1】
KACHANOV L M. On the creep fracture time[J]. Izvestia Academii Nauk Sssr Otdelenie Tekhnicheskich Nauk, 1958, 8:26-31.
【2】
ROBOTNOV Y N. Creep rupture[C]//Proceedings of the Ⅻ International Congress on Application Mechanisms. Berlin:Springer, 1969.
【3】
KWON O, TACK A J, THOMAS C W,et al. The development of a multiaxial stress rupture criterion for bolting steels using new and service aged materials[J]. International Journal of Pressure Vessels and Piping, 2000, 77:91-97.
【4】
KWON O, THOMAS C W,KNOWLES D. Multiaxial stress rupture behavior and stress-state sensitivity of creep damage distribution in Dureheter 1055 and 2.25Cr1Mo steel[J]. International Journal of Pressure Vessels and Piping, 2004, 81:535-542.
【5】
HYDE T H, XIA L, BECKER A A. Prediction of creep failure aeroengine materials under multi-axial stress states[J]. International Journal of Mechanical Sciences, 1996, 38:385-403.
【6】
GOYAL S, LAHA K, DAS C R, et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behavior of 2.25Cr-1Mo steel[J]. Materials Science and Engineering A, 2013, 563:68-77.
【7】
GOYAL S, LAHA K, DAS C R, et al. Finite element analysis of effect of triaxial state of stress on creep cavitation and rupture behavior of 2.25Cr-1Mo steel[J]. International Journal of Mechanical Sciences, 2013, 75:233-243.
【8】
STEWART C M, GORDON A P. Modeling the temperature dependence of tertiary creep damage of a Ni-based alloy[J]. Journal of Pressure Vessel Technology, 2009,131:051406.
【9】
STEWART C M, GORDON A P. Strain and damage-based analytical methods to determine the Kachanov-Rabotnov tertiary creep-damage constants[J]. International Journal of Damage Mechanics, 2012, 21:1186-1201.
【10】
JIANG Y P, GUO W L, YUE Z F,et al. On the study of the effects of notch shape on creep damage development under constant loading[J]. Materials Science and Engineering A, 2006, 437:340-347.
【11】
JIANG Y P, GUO W L, YUE Z F. On the study of the creep damage development in circumferential notch specimens[J]. Computational Materials Science, 2007, 38:653-659.
【12】
HYDE T H, SUN W, WILLIAMS J A. Life estimation of pressurized pipe bends using steady-state creep reference rupture stresses[J]. International Journal of Pressure Vessels and Piping, 2002, 79:799-805.
【13】
HYDE T H, BECKER A A, SUN W, et al. Influence of geometry change on creep failure life of 90° pressurized pipe bends with no initial ovality[J]. International Journal of Pressure Vessels and Piping, 2005, 82:509-516.
【14】
OTHMAN A M, HAYHURST D R, DYSON B F. Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences.[S.l.]:The Royal Society, 1993, 441(1912):343-358.
【15】
MUSTATA R, HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 565℃-675℃[J]. International Journal of Pressure Vessels and Piping, 2005, 82:363-372.
【16】
KOWALEWSKI Z L, HAYHURST D R, DYSON B F. Mechanisms-based creep constitutive equations for analuminium alloy[J]. The Journal of Strain Analysis for Engineering Design, 1994, 29:309-316.
【17】
LIU Y, MURAKAMI S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis[J]. JSME International Journal, 1998, 41:57-65.
【18】
HYDE C J, HYDE T H, SUN W, et al.Damage mechanics based predictions of creep crack growth in 316 stainless steel[J]. Engineering Fracture Mechanics, 2010, 77:2385-2402.
【19】
ROUSE J P, SUN W, HYDE T H, et al. Comparative assessment of several creep damage models for use in life prediction[J]. International Journal of Pressure Vessels and Piping, 2013, 108/109:81-87.
【20】
WEBSTER G A, HOLDWORTH S R, LOVEDAY M S, et al. A code of practice for conducting notched bar creep tests and for interpreting the data[J]. Fatigue and Fracture of Engineering Materials & Structures, 2004, 27:319-342.
【21】
姚华堂,轩福贞,沈树芳,等. 高温材料的多轴蠕变试验方法[J]. 机械工程材料,2008, 32(1):5-9.
【22】
张玉财. 多轴应力状态下钎焊接头蠕变损伤与裂纹扩展研究[D]. 上海:华东理工大学, 2016:36-41.
【23】
倪永中,蓝翔. 一种用于P92钢寿命预测的蠕变模型研究[J]. 应用力学学报, 2014, 31(6):978-982.
【24】
温建锋. 基于应变的损伤力学模型及其在蠕变裂纹扩展数值模拟中的应用[D]. 上海:华东理工大学, 2014:11.
【25】
WEN J F, TU S D. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210.