基于HyperXtrude软件, 研究了6063铝合金空心型材挤压过程中不同方向上的金属流速及焊合室内的压力分布, 分析了型材产生尺寸超差的原因, 并提出了增加阻流块优化模具的方法。有限元模拟结果表明: 增加阻流块后, 金属在不同方向上的流速发生了变化, 尤其是向型材中部流动的速度明显降低, 因此可以解决型材尺寸超差的问题; 将解决方法用于实际挤压型材后发现, 增加阻流块确实能改善金属流速的均匀性, 能生产出合格的型材。
所属栏目
材料性能及其应用国家自然科学基金面上资助项目(51075132); 湖南省杰出青年基金资助项目(09JJ1007); 湖南大学汽车车身先进设计制造国家重点实验室自主课题项目(61075005); 国家科技支撑计划项目(2011BAG03B02)
收稿日期
2012/7/22013/5/22
作者单位
王冠:湖南大学 汽车车身先进设计制造国家重点实验室, 长沙410082湖南大学 机械与运载工程学院, 长沙410082
何芯:湖南大学 汽车车身先进设计制造国家重点实验室, 长沙410082
李落星:湖南大学 汽车车身先进设计制造国家重点实验室, 长沙410082湖南大学 机械与运载工程学院, 长沙410082
姚再起:浙江吉利汽车研究院有限公司, 杭州311228
备注
王冠(1985-), 男, 河南郑州人, 博士研究生。
引用该论文:
WANG Guan,HE Xin,LI Luo-xing,YAO Zai-qi.Size Deviation Analysis and Die Optimization Design of 6063 Aluminum Alloy Extruded Profile[J].Materials for mechancial engineering,2013,37(7):85~89
王冠,何芯,李落星,姚再起.6063铝合金挤压型材尺寸超差分析及模具优化设计[J].机械工程材料,2013,37(7):85~89
被引情况:
【1】
孙颖迪,李光振,陈秋荣, "AZ31镁合金方管挤压成型的数值模拟",机械工程材料
39, 84-89(2015)
参考文献
【1】
吴锡坤.铝型材加工使用技术手册[M].长沙: 中南大学出版社, 2006.
【2】
董菲菲, 周佳, 刘志文, 等.AM80镁合金板材热挤压工艺的数值模拟[J].机械工程材料, 2012, 36(10): 77-80.
【3】
林启权, 李应明, 王振球.2519铝合金管材热挤压过程的数值模拟[J].机械工程材料, 2007, 31(12): 79-82.
【4】
WILLIAMS A J, CROFT T N, CROSS M. Computational modeling of metal extrusion and forging process[J].Journal of Materials Processing Technology, 2002, 125/126: 573-582.
【5】
刘祖岩, 许玮, 王尔德 AZ31镁合金在不同温度场挤压中的数值模拟[J].机械工程材料, 2006, 30(10): 77-79.
【6】
LOF J, BLOKHUIS Y. FEM simulations of the extrusion of complex thin-wall aluminium sections[J].Journal of Materials Processing Technology, 2002, 122(2/3): 344-354.
【7】
CHANDA T, ZHOU J, DUSZCZYK J. A comparative study on iso-speed extrusion and isothermal extrusion of 6061 Al alloy using 3D FEM simulation[J].Journal of Materials Processing Technology, 2001, 114: 45-153.
【8】
ZHOU J, LI L X, DUSZCZYK J. Computer simulated and experimentally verified isothermal extrusion of 7075 aluminium through continuous ram speed variation[J].Journal of Materials Processing Technology, 2004, 146: 203-212.
【9】
LI L, ZHANG H, ZHOU J, et al. Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium profile with longitudinal weld seams[J].Materials and Design, 2008, 29: 1190-1198.
【10】
LI L, ZHOU J, DUSZCZYK J. Prediction of temperature evolution during the extrusion of 7075 aluminium alloy at various ram speeds by means of 3D FEM simulation[J].Journal of Materials Processing Technology, 2004, 145: 360-370.
【11】
DUAN X, SHEPPARD T. Simulation and control of microstructure evolution during hot extrusion of hard aluminum alloys[J].Materials Science and Engineering A, 2003, 351(1): 282-292.
【12】
DUAN X, VELAY X, SHEPPARD T. Application of finite element method in the hot extrusion of aluminum alloys[J].Materials Science and Engineering A, 2004, 369(1): 66 -75.
【13】
ZHOU J, LI L, DUSZCZYK J. 3D FEM simulation of whole cycle of aluminium extrusion throughout the transient state and the steady state using the updated Lagrangian approach[J].Journal of Materials Processing Technology, 2003, 134: 383-397.
【14】
LIU G, ZHOU J, DUSZCZYK J. FE analysis of metal flow and weld seam formation in a porthole die during the extrusion of a magnesium alloy into a square tube and the effect of ram speed on weld strength[J].Journal of Materials Processing Technology, 2008, 200: 185-198.
【15】
LIU G, ZHOU J, DUSZCZYK J. Prediction and verification of temperature evolution as a function of ram speed during the extrusion of AZ31 alloy into a rectangular section[J].Journal of Materials Processing Technology, 2007, 186: 191-199.