介绍了近十年来锂离子电池负极用硅/碳纳米复合材料的主要制备方法, 包括热解法、化学气相沉积法、球磨法、水热法以及溶胶凝胶法等, 以及硅/碳复合材料的微结构特征及其对复合材料比容量和循环性能的影响。最后, 对硅/碳纳米复合材料的研究方向进行了展望。
所属栏目
综述国家自然科学基金资助项目(51001070)
收稿日期
2011/9/222012/6/6
作者单位
赵智泉:上海交通大学金属基复合材料国家重点实验室, 上海 200240
刘庆雷:上海交通大学金属基复合材料国家重点实验室, 上海 200240
黄大成:上海交通大学金属基复合材料国家重点实验室, 上海 200240
周凤羽:上海交通大学金属基复合材料国家重点实验室, 上海 200240
刘元超:上海交通大学金属基复合材料国家重点实验室, 上海 200240
张荻:上海交通大学金属基复合材料国家重点实验室, 上海 200240
备注
赵智泉(1986-), 女, 黑龙江哈尔滨人, 硕士研究生。
引用该论文:
ZHAO Zhi-quan,LIU Qing-lei,HUANG Da-cheng,ZHOU Feng-yu,LIU Yuan-chao,ZHANG Di.Research Development of Preparation Methods and Properties of Si/C Nanocomposites Used for Cathode of Lithium-Ion Battery[J].Materials for mechancial engineering,2012,36(9):1~7
赵智泉,刘庆雷,黄大成,周凤羽,刘元超,张荻.锂离子电池负极用硅/碳纳米复合材料制备方法和性能的研究进展[J].机械工程材料,2012,36(9):1~7
被引情况:
【1】
李兆萍,王一平,杨颖,陈吉,顾新云, "固相反应烧结制备锂离子电池正极材料LiFeBO
3及其电化学性能",机械工程材料
38, 16-19(2014)
【2】
张静,王月磊,刘浩涵,邱胜杰,蔡 聪,宓一鸣, "简单包覆改性LiMn
2O
4正极材料在高温下的电化学性能",机械工程材料
39, 59-64(2015)
参考文献
【1】
黄可龙, 王兆翔, 刘素琴.锂离子电池原理与关键技术[M].北京: 化学工业出版社, 2008.
【2】
TEKI R, DATTA M K, KRISHNAN R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J].Small, 2009, 5: 2236-2242.
【3】
KANG Y M, LEE S M, KIM S J, et al. Phase transitions explanatory of the electrochemicaldegradation mechanism of Si based materials[J].Electrochemistry Communications, 2007, 9: 959-964.
【4】
MORITAZ T, TAKAMI N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J].Journal of the Electrochemical Society, 2006, 153: A425-A430.
【5】
DING N, XU J, YAO Y X, et al. Determination of the diffusion coefficient of lithium ions in nano-Si[J].Solid State Ionics, 2009, 180: 222-225.
【6】
LIU Y, HANAIA K, YANG J, et al. Morphology-stable silicon-based composite for Li-intercalation[J].Solid State Ionics, 2004, 168: 61-68.
【7】
WANG K, HE X , WANG L, et al. Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries[J].Solid State Ionics, 2007, 178: 115-118.
【8】
RYU J H, KIM J W, SUNG Y E, et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochemical and Solid-State Letters, 2004, 7: A306-A309.
【9】
CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J].Nano Letters, 2009, 9: 491-495.
【10】
DATTA M K, KUMTA P N. Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries[J].Journal of Power Sources, 2007, 165: 368-378.
【11】
KASAVAJJULA U, WANG C, APPLEBY A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J].Journal of Power Sources, 2007, 163: 1003-1039.
【12】
LARCHER D, MUDALIGE C, GEORGE A E, et al. Si-containing disordered carbons prepared by pyrolysis of pitch / polysilane blends: effect of oxygen and sulfur[J].Solid State Ionics, 1999, 122: 71-83.
【13】
WEN Z S, YANG J, WANG B F, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2003, 5: 165-168.
【14】
YANG J, WANG B F, WANG K, et al. SiO/C composites for high capacity lithium storage materials[J].Electrochemical and Solid-State Letters, 2003, 6: A154-A156.
【15】
WANG L, DING C X, ZHANG L C, et al. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries[J].Journal of Power Sources, 2010, 195: 5052-5056.
【16】
NG S H, WANG J, WEXLER D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J].Angewandte Chemie-International Edition, 2006, 45: 6896-6899.
【17】
NG S H, WANG J, WEXLER D, et al. Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries[J].Journal of Physical Chemistry C, 2007, 111: 11131-11138.
【18】
HOLZAPFEL M, BUQA H, KRUMEICH F, et al. Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries[J].Electrochemical and Solid-State Letters, 2005, 8: A516-A520.
【19】
HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J].Chemical Communications, 2005: 1566-1568.
【20】
LUO Z, FAN D, LIU X, et al. High performance silicon carbon composite anode materials for lithium ion batteries[J].Journal of Power Sources, 2009, 189: 16-21.
【21】
YOSHIO M, WANG H, FUKUDA K, et al. Carbon-coated Si as a lithium-ion battery anode material[J].Journal of the Electrochemical Society, 2002, 149: A1598-A1603.
【22】
WANG G X, YAO J, LIU H K. Characterization of nanocrystalline Si-MCMB composite anode materials[J].Electrochemical and Solid-State Letters, 2004, 7: A250-A253.
【23】
LIU W R, GUO Z Z, YOUNG W S, et al. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive[J].Journal of Power Sources, 2005, 140: 139-144.
【24】
YOSHIO M, TSUMURA T, DIMOV N. Electrochemical behaviors of silicon based anode material[J].Journal of Power Sources, 2005, 146: 10-14.
【25】
ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J].Electrochimica Acta, 2006, 51: 4994-5000.
【26】
EOM J Y, PARK J W, KWON H S, et al. Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling[J].Journal of The Electrochemical Society, 2006, 153: A1678-A1684.
【27】
DIMOV N, KUGINO S, YOSHIO M. Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations[J].Electrochimica Acta, 2003, 48: 1579-1587.
【28】
LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J].Electrochemistry Communications, 2004, 6: 465-469.
【29】
DATTA M K, KUMTA P N. Silicon and carbon based composite anodes for lithium ion batteries[J].Journal of Power Sources, 2006, 158: 557-563.
【30】
GUO Z P, MILIN E, WANG J Z, et al. Silicon/disordered carbon nanocomposites for lithium-ion battery anodes[J].Journal of the Electrochemical Society, 2005, 152: A2211-A2216.
【31】
LIU Y, HANAI K, YANG J, et al. Silicon/carbon composites as anode materials for Li-ion batteries[J].Electrochemical and Solid-State Letters, 2004, 7: A369-A372.
【32】
WANG W, KUMTA P N. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries[J].Journal of Power Sources, 2007, 172: 650-658.
【33】
HU Y S, DEMIR-CAKAN R, TITIRICI M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].Angewandte Chemie-International Edition, 2008, 47: 1645-1649.
【34】
WANG G X, AHN J H, YAO J, et al. Nanostructured Si-C composite anodes for lithium-ion batteries[J].Electrochemistry Communications, 2004, 6: 689-692.
【35】
JUNG Y S, LEE K T, OH SEUNG M. Si-carbon core-shell composite anode in lithium secondary batteries[J].Electrochimica Acta, 2007, 52: 7061-7067.
【36】
BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J].Angewandte Chemie-International Edition, 2008, 47: 2930-2946.
【37】
KIM H, CHO J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material[J].Nano Letters, 2008, 8: 3688-3691.
【38】
SHU J, LI H, YANG R, et al. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries[J].Electrochemistry Communications, 2006, 8: 51-54.
【39】
CUI L F, YANG Y, HSU C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries [J].Nano Letters, 2009, 9: 3370-3374.
【40】
JI L, ZHANG X. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes[J].Electrochemistry Communications, 2009, 11: 1146-1149.
【41】
WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J].ACS Nano, 2010, 4: 2233-2241.