通过磁控共溅射方法制备了一系列不同硅含量的锆-硅-氮复合薄膜;采用能谱仪、X射线衍射仪、扫描电镜和微力学探针等对复合薄膜进行了表征;研究了薄膜中硅、锆原子比对复合薄膜的显微组织、高温抗氧化性能和力学性能的影响.结果表明:随着硅含量的增加,复合薄膜的ZrN(111)、(220)晶面衍射峰逐渐消失,呈现ZrN(200)择优取向;同时其性能逐渐提高,当硅、锆原子比为0.030时可获得最大硬度和最大弹性模量,分别为37.8 GPa和363 GPa;进一步增加硅含量,复合薄膜向非晶态转化,而薄膜的硬度和弹性模量迅速降低,抗氧化温度显著提高.
所属栏目
材料性能及其应用国家自然科学基金资助项目(50574044)
收稿日期
2007/9/212008/5/6
作者单位
董松涛:江苏科技大学材料科学与工程学院,先进焊接技术重点实验室, 江苏 镇江 212003
喻利花:江苏科技大学材料科学与工程学院,先进焊接技术重点实验室, 江苏 镇江 212003
董师润:江苏科技大学材料科学与工程学院,先进焊接技术重点实验室, 江苏 镇江 212003
许俊华:江苏科技大学材料科学与工程学院,先进焊接技术重点实验室, 江苏 镇江 212003
备注
董松涛(1982-),男,河南驻马店人,硕士研究生.
引用该论文:
DONG Song-tao,YU Li-hua,DONG Shi-run,XU Jun-hua.Microstructure and Properties of Zr-Si-N Composite Films Prepared by Reactive Magnetron Co-sputtering[J].Materials for mechancial engineering,2008,32(9):54~58
董松涛,喻利花,董师润,许俊华.磁控共溅射制备锆-硅-氮复合薄膜的显微组织与性能[J].机械工程材料,2008,32(9):54~58
参考文献
【1】
Hultman L.Thermal stability of nitride thin film[J].Vacuum,2000,57:1-30.
【2】
Wittmer M,Noser J,Melchior H.Oxidation kinetics of TiN thin films[J].J Appl Phys,1981,52:6659-6664.
【3】
Veprek S,Reiprich S,Li Shizhi.Superhard nanocrystalline composite materials:the TiN/Si3N4 system[J].Appl Phys Lett,1995,66:2640-2642.
【4】
Nose M,Zhou M,Nagae T,et al.Properties of Zr-Si-N coatings prepared by RF reactive sputtering[J].Surface and Coatings Technology,2000,132:163-168.
【5】
Pilloud D,Pierson J F,Marques A P,et al.Structural changes in Zr-Si-N films vs.their silicon content[J].Surface and Coatings Technology,2004,180/181:352-356.
【6】
Pilloud D,Pierson J F,Takadoum J.Structure and tribological properties of reactively sputtered Zr-Si-N films[J].Thin Solid Films,2006,496:445-449.
【7】
Musil J,Daniel R,Zeman P,et al.Structure and properties of magnetron sputtered Zr-Si-N films with a high (≥25 at.%) Si content[J].Thin Solid Films,2005,478:238-247.
【8】
Steyer P,Pilloud D,Pierson J F,et al.Oxidation resistance improvement of arc-evaporated TiN hard coatings by silicon addition[J].Surface & Coatings Technology,2006,201:4158-4162.
【9】
Mae T,Nose M,Zhou M,et al.The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f.reactive sputtering method[J].Surface and Coatings Technology,2001,142/144:954-958.
【10】
Pilloud D,Pierson J F,Marco de Lucas M C,et al.Stabilisation of tetragonal zirconia in oxidized Zr-Si-N nanocomposite coatings[J].Applied Surface Science,2004,229:132-139.
【11】
Daniel R,Musil J,Zeman P,et al.Thermal stability of magnetron sputtered Zr-Si-N films[J].Surface & Coatings Technology,2006,201:3368-3376.
【12】
Steyer P,Pilloud D,Pierson J F,et al.Oxidation resistance improvement of arc-evaporated TiN hard coatings by silicon addition[J].Surf Coat Technol,2006,201:4158-4162.
【13】
Veprek S,Veprek H,Maritza G J,et al.Different approaches to superhard coatings and nanocomposites[J].Thin Solid Films,2005,476(1):1-29.
【14】
Veprek S,Reiprich S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268:64-71.
【15】
Sandu C S,Benkahoul M,Sanjinés R,et al.Model for the evolution of Nb-Si-N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties[J].Surface and Coatings Technology,2006,201(6):2897-2903.
【16】
Hultman L,Bareo J,Flink A,et al.Interface structure in superhard TiN-SiN nanolaminates and nanocomposites:Film growth experiments and ab initio calculations[J].Phys Rev B,2007,75:1-6.
【17】
孔 明,赵文济,乌晓燕,等.TiN/Si3N4纳米晶复合膜的微结构和强化机制[J].无机材料学报,2007,22(3):539-544.
【18】
Nose M,Chiou W A,Zhou M,et al.Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering[J].J Vac Sci Technol A,2002,20(3):823-828.
【19】
Cahn J W.Hardening by spinodal decomposition[J].Acta Metall,1963,11:275-1282.
【20】
Kato M,Mori T,Schwartz L H.Hardening by spinodal modulated structure[J].Acta Metall,1980,28(3):285-290.