以花生壳为原料, 利用控温炭化得到了保留原材料生物学特征结构的多孔炭, 采用XRD、SEM等对多孔炭的组成、形貌、非等温氧化质量损失曲线进行了研究。结果表明: 多孔碳具有蜂巢状孔结构, 其孔径约为10 μm, 另有不少横向带状物连结着各个孔; 其相组成为典型的非晶态石墨碳, 随炭化温度升高, (002)面峰强增大, 晶面间距增加, 结构逐渐向理想石墨靠近; 非等温氧化速率先升高后降低, 这是由于组成多孔炭的石墨烯片层结构中活性炭原子数量随氧化反应的进行发生变化所致。
所属栏目
收稿日期
2010/10/92011/3/20
作者单位
颜晨悦:湖南大学材料科学与工程学院, 长沙 410082
高朋召:湖南大学材料科学与工程学院, 长沙 410082
李玉平:湖南大学材料科学与工程学院, 长沙 410082
备注
颜晨悦(1985-), 男, 湖南衡阳人, 硕士研究生。
引用该论文:
YAN Chen-yue,GAO Peng-zhao,LI Yu-ping.Preparation and Non-isothermal Oxidation Property of Porous Biomorphic Carbon Taking Peanut Shell as Raw Material[J].Materials for mechancial engineering,2011,35(10):28~31
颜晨悦,高朋召,李玉平.以花生壳为原料制备生物形态多孔炭及其非等温氧化性能[J].机械工程材料,2011,35(10):28~31
参考文献
【1】
SIEBER H, HOFFMANN C, KAINDL A,et al. Biomorphic cellular ceramics[J].Adv Eng Mater,2000,2(3):105-109.
【2】
ZANDERSONS J, GRACITIS J, ZHURINSH A,et al. Carbon materials obtained from self-binding sugar cane bagasse and deciduous wood residues plastics[J].Biomass & Bioenergy,2004,26(4):345-360.
【3】
崔福斋, 郑传林.仿生材料[M].北京: 化学工业出版社,2004.
【4】
ZHRINSH J L, BERZINA CIMDINA L. Investigation of the feasibility of pyrolytic obtaining of porous biomorphic SiC ceramics[J].Journal of Analytical and Applied Pyrolysis,2009,85:544-548.
【5】
GREIL P, VOGLI E, FEY T,et al. Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics[J ].Journal of the European Ceramic Society,2002, 22(14/15): 269-722.
【6】
SINGH M, YEE B M. The synthesis and microstructure of morph-genetic TiC/C ceramics[J ].Journal of the European Ceramic Society, 2004, 24 (2): 209-217.
【7】
ZOLLF R C, KLADNY R, SIEBER H. Microstructure and phase morphology of wood derived biomorphous Si/SiC ceramics[J ].Journal of the European Ceramic Society, 2004, 24(2): 479-487.
【8】
GAO Peng-zhao, XIAO Han-ning, WANG Hong-jie. A study on the oxidation kinetics and mechanism of three-dimensional (3D) carbon fiber braid coated by gradient SiC[J].Materials Chemistry and Physics,2005,93: 164-169.
【9】
GAO Peng-zhao, WANG Hong-jie, JIN Zhi-hao. Oxidation properties and kinetic study of thermal decomposition of three-dimensional (3-D) braided carbon fiber[J].Thermochimica Acta, 2004, 414: 59-63.
【10】
BYRNE C E, NAGLE D C. Carbonization of wood for advanced materials applications[J].Carbon, 1997, 35(2): 259-265.
【11】
GREIL P. Biomorphous ceramics from lignocellulosics[J].Journal of the European Ceramic Society, 2001, 21(2): 105-118.
【12】
PARGITT R L, NEWMAN R H. 13C NMR study of pine needle decomposition[J].Plant and Soil, 2000, 219(1/2): 273-278.
【13】
ONODERA A, TERASHINMA K, URUSHIIHARA T. High-pressure synthesis of diamond from phenolic resin[J].Mater Sci,1997, 32: 4309-4318.
【14】
CUESTA A, DHAMELINCOURT P, LAUREYNS J,et al. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials[J].Mater Chem, 1998, 8(12): 2875-2879.
【15】
TZENG S S, CHT Y G. Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis[J].Materials Chemistry and Physics, 2002, 73: 162-169.
【16】
KERCHER A K, NAGLE D C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis [J].Carbon, 2003, 41(1): 15-27.
【17】
BARSTCH M, BRAUM A, SCHNYDER B,et al. Haas bipolar glassy carbon electrochemical double-Layer capacitor: 100000 cycles demonstrated[J].Journal of New Materials for Electrochemical Systems,1999,273(2):14-26.
【18】
CHENG H M, ENDO H, OKABE T,et al. Graphitization behavior of wood ceramics and bamboo ceramics as determined by X-ray diffraction[J].Journal of Porous Materials,1999, 6(3): 233-237.
【19】
SHIRAISHI M. New introduction to carbon materials[M].Tokyo: Realize, 1996.
【20】
HIROSE T, FAN T X, OKABE T. Surface area characteristics of woodceramics[J].Mater Sci, 2001, 36(17): 4145-4149.