采用干磨和湿磨两种高能球磨工艺制备了AB5型Ml(NiCoMnAl)5纳米储氢合金;采用X射线衍射仪对其进行了结构表征,并用气体反应装置进行了储氢性能试验,研究了纳米化对其储氢性能的影响.结果表明:用两种方法经过4 h的球磨后,合金的晶粒尺寸都减小到20 nm以下,并且湿磨使晶粒尺寸的减小比干磨的快,而湿磨使晶格畸变的增加比干磨的小;球磨时间相同时,湿磨合金粉的晶格畸变比干磨的更小;高能球磨导致的晶粒纳米化以及晶格畸变增大使合金的储氢容量减少,并使合金PCI曲线上吸/脱氢压力平台倾斜;除晶粒尺寸外,晶格畸变对纳米储氢合金的储氢性能有明显的影响,随晶格畸变的增大,其储氢容量有减小的趋势.
所属栏目
纳米材料国家自然科学基金资助项目(50771045,50631020);国家“863”计划资助项目(2007AA05Z110,2007AA05Z115);国家“973”计划资助项目(2010CB631302);广东省自然科学基金资助项目(D06300159)
收稿日期
2009/7/72010/4/6
作者单位
彭成红:华南理工大学材料科学与工程学院, 广州 510640
欧阳柳章:华南理工大学材料科学与工程学院, 广州 510640
朱敏:华南理工大学材料科学与工程学院, 广州 510640
备注
彭成红(1966-),女,四川西昌人,高级工程师,博士.
引用该论文:
PENG Cheng-hong,OUYANG Liu-zhang,ZHU Min.Effect of Nanocrystallization on Hydrogen Storage Properties of AB5 Type Hydrogen Storage Alloy[J].Materials for mechancial engineering,2010,34(9):82~86
彭成红,欧阳柳章,朱敏.纳米化对AB5型储氢合金储氢性能的影响[J].机械工程材料,2010,34(9):82~86
参考文献
【1】
ZALUSKI L,ZALUSKA A,STROM-OLSEN J O.Nanocrystalline metal hydrides[J].J Alloys Comp,1997,253/254:70-79.
【2】
LIANG G,HUOT J,BOILY S,et al.Hydrogen storage properties of nanocrystalline Mg1.9Ti0.1 Ni made by mechanical alloying[J].J Alloys Comp,1999,282:286-290.
【3】
ARES J R,CUEVAS F,PERCHERON-GU′EGAN A.Microstructural effects in the hydrogenation kinetics of commercial-type LaNi5 alloy[J].Journal of Alloys and Compounds,2005,404/406:327-331.
【4】
JURCZYK M,NOWAK M,JANKOWSKA E.Nanocrysta-lline LaNi4-xMn0.75Al0.25Cox electrode materials prepared by mechanical alloying (0≤x≤1.0)[J].J Alloys Comp,2002,340:281-285.
【5】
LU D,LI W,HU S,et al.Uniform nanocrystalline AB5-type hydrogen storage alloy:preparation and properties as negative materials of Ni/MH battery[J].Int J Hydrogen Energy,2006,31(6):678-82.
【6】
FUJII H,MUNEHIRO S,FUJII K,et al.Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5[J].J Alloys Comp,2002,330/332:747.
【7】
SINGH B K,SHIM G,CHO S W.Effects of mechanical milling on hydrogen storage properties,of Ti0.32Cr0.43V0.25 alloy[J].International Journal of Hydrogen Energy,2007,32:4961-4965.
【8】
ZHU M,PENG C H,OUYANG L Z,et al.The effect of nanocrystalline formation on hydrogen storage properties of AB3-base Ml-Mg-Ni multi-phase alloys[J].J Alloys Comp,2006,426:316-321.
【9】
SAKINTUNAA A B,LAMARI-DARKRIMB F,HIRSCHERC M.Review,metal hydride materials for solid hydrogen storage[J].International Journal of Hydrogen Energy,2007,32:1121-1140.
【10】
DE KELJSER T H,LANGFORD J I,MITTERMIJER E J,et al.Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening[J].J Appl Crystallogr,1982,15:308-14.
【11】
SURYANARAYANA C.Mechanical alloying and milling[J].Progress in Materials Science,2001,46:1-184.
【12】
SURYANARANANA C,IVANOV E,VBOLDYREV V.The science and technology of mechanical alloying[J].Mater Sci Eng A,2001,304/306:151-158.
【13】
CRIADO J M,REAL C.Correlation between crystallite size and microstrains in materials subjected to thermal and/or mechanical treatments[J].J Material Science Letters,1986,5:467-469.
【14】
张瑾瑾,王志法,张行健,等.高能球磨工艺对Mo颗粒尺寸的影响[J].中国钼业,2005,29(1):28-30.
【15】
GUOXIAN L,ERDE W,SHOUSHI F.Hydrogen absorption and desorption characteristics of mechanically milled Mg-35wt% FeTi1.2 powders[J].J Alloys Compds,1995,223:111-114.
【16】
ORIMO S,FUJII H,IKEDA K,et al.Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding[J].Acta Materialia,1997,45:331-341.
【17】
LIANG G,HUOT J,SCHULZ R.Hydrogen storage pro-perties of the mechanically alloyed LaNi5-based materials[J].J Alloys Comp,2001,320:133-139.
【18】
LU K,SUI M L.Thermal expansion behaviors in nanocry-stalline materials with a wide grain size range[J].Aeta Metall,1995,43:3325-3332.
【19】
ZHANG Z K,CUI Z L.Phase structure in n-Y203[J].Nanostructure Materials,1994,4(7):823-831.
【20】
ZHANG Z K,CUI X X,LI Y K.Method of profile refinement of X-ray and analysis of stress on materials[J].Chinese Science Bulletin,1990,35(2):153-157.
【21】
SUI M L,LU K.Variation in lattice Parameters with grain size of a nano Phase Ni3P compound[J].Mater Sci Eng A,1993,179/180:541-544.