在轮轨模拟试验机上模拟了列车车轮在高速(350 km·h-1)和低速(120 km·h-1)工况下的运行过程, 对比分析了两种工况下车轮的损伤行为。结果表明: 两种工况下车轮试样均出现了非均匀磨损, 表面磨痕沿车轮滚动方向交替出现了光滑区域和粗糙区域; 低速工况下车轮试样的磨损量明显大于高速工况下的, 其粗糙区域和光滑区域的损伤差异性较大, 而高速工况下两个区域的损伤差异性较小。
所属栏目
试验研究国家自然科学基金资助项目(51475393); 2013年西南交通大学博士研究生创新基金资助和中央高校基本科研业务费支持项目; 西南交通大学牵引动力国家重点实验室自主课题项目(TPL1301)
收稿日期
2015/7/82016/7/7
作者单位
周桂源:西南交通大学, 牵引动力国家重点实验室摩擦学研究所, 成都 610031
何成刚:西南交通大学, 牵引动力国家重点实验室摩擦学研究所, 成都 610031
文 广:西南交通大学, 牵引动力国家重点实验室摩擦学研究所, 成都 610031
刘启跃:西南交通大学, 牵引动力国家重点实验室摩擦学研究所, 成都 610031
备注
周桂源(1987-), 男, 重庆人, 博士研究生。
引用该论文:
ZHOU Gui-yuan,HE Cheng-gang,WEN Guang,LIU Qi-yue.Comparison of Damage Behaviors of Railway Wheel under High and Low Speed Conditions[J].Materials for mechancial engineering,2016,40(10):6~10
周桂源,何成刚,文 广,刘启跃.高速和低速工况下列车车轮的损伤行为对比[J].机械工程材料,2016,40(10):6~10
参考文献
【1】
李克强. 政府工作报告——2015年3月5日在第十二届全国人民代表大会第三次会议上[N].人民日报, 2015-03-17(1)[2015-04-08].
【2】
LINGAMANAIK S N, CHEN B K. Prediction of residual stresses in low carbon bainitic-martensitic railway wheels using heat transfer coefficients derived from quenching experiments[J]. Computational Materials Science, 2013, 77: 153-160.
【3】
BEVAN A, MOLYNEUX-BERRY P, EICKHOFF B, et al. Development and validation of a wheel wear and rolling contact fatigue damage model[J]. Wear, 2013, 307(1/2): 100-111.
【4】
马跃, 潘涛, 江波,等. S含量对高速车轮钢断裂韧性影响的研究[J]. 金属学报, 2011, 47(8): 978-983.
【5】
曾东方, 鲁连涛, 张远彬,等. 高速轮轨材料匹配的滚动接触磨损性能[J]. 机械工程学报, 2013, 49(13): 183-189.
【6】
刘吉华, 周桂源, 刘启跃. 四种成分车轮钢的耐磨性及疲劳特性[J]. 机械工程材料, 2013,37(5): 80-84.
【7】
申鹏. 轮轨黏着特性试验研究[D].成都: 西南交通大学, 2012.
【8】
钟雯, 董霖, 王宇, 等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学学报, 2012, 32(1): 96-101.
【9】
LIU Q Y, ZHANG B, ZHOU Z R. An experimental study of rail corrugation[J]. Wear, 2003, 255(7): 1121-1126.
【10】
ZAPATA D, JARAMILLO J, TORO A. Rolling contact and adhesive wear of bainitic and pearlitic steels in low load regime[J]. Wear, 2011, 271(1/2): 393-399.
【11】
CVETKOVSKI K, AHLSTRM J. Characterisation of plastic deformation and thermal softening of the surface layer of railway passenger wheel treads[J]. Wear, 2013, 300(1/2): 200-204.
【12】
WETSCHER F, STOCK R, PIPPAN R. Changes in the mechanical properties of a pearlitic steel due to large shear deformation[J]. Materials Science and Engineering A, 2007, 445: 237-243.
【13】
GARNHAM J E, DAVIS C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9/10): 1363-1372.
【14】
EKBERG A, KESSON B, KABO E. Wheel/rail rolling contact fatigue-Probe, predict, prevent[J]. Wear, 2014, 314(1/2): 2-12.
【15】
张永利. 轮对垂向高频振动的研究[D]. 大连: 大连交通大学, 2005.
【16】
MOLYNEUX-BERRY P, DAVIS C, BEVAN A. The influence of wheel/rail contact conditions on the microstructure and hardness of railway wheels[J]. The Scientific World Journal, 2014, 2014: 209752.
【17】
ABDEL-KARIM M, OHNO N. Kinematic hardening model suitable for ratchetting with steady-state[J]. International Journal of Plasticity, 2000, 16(3/4): 225-240.
【18】
EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258(7/8): 1288-1300.