研究了拉拔变形程度和电磁搅拌对Cu-6%Ag合金组织、铜枝晶取向、抗拉强度和电导率的影响。结果表明: 随着拉拔变形程度的增加, 有、无电磁搅拌合金纤维状第二相的直径和间距不断减小, 但合金的抗拉强度均增加, 电导率均较铸态的有所下降; 有电磁搅拌铸态合金的铜枝晶无取向, 拉拔变形使铜枝晶的〈111〉取向增强; 虽然有电磁搅拌合金中的纤维状第二相的直径和间距较无电磁搅拌合金的大, 但其综合性能(强度和电导率)更优; 电磁搅拌对拉拔变形后合金的抗拉强度影响不大, 但却使电导率明显升高。
所属栏目
试验研究国家高技术研究发展计划项目(2007AA03Z519); 高等学校学科创新引智计划资助项目(B07015); 国家自然科学基金资助项目(51004038); 科技重大专项课题(2012ZX04010031-2)
收稿日期
2012/10/302013/8/27
作者单位
柳艳:沈阳汽车工业学院机械工程系, 沈阳 110015
李贵茂:辽宁科技学院冶金工程学院, 本溪 117004
殷秋菊:沈阳汽车工业学院机械工程系, 沈阳 110015
周超梅:沈阳汽车工业学院机械工程系, 沈阳 110015
于军:沈阳汽车工业学院机械工程系, 沈阳 110015
备注
柳艳(1979-), 女, 辽宁葫芦岛人, 讲师, 硕士。
引用该论文:
LIU Yan,LI Gui-mao,YIN Qiu-ju,ZHOU Chao-mei,YU Jun.Effect of Drawing Deformation and Electric Magnetic Stirring on Microstructure and Properties of Cu-6%Ag Alloy[J].Materials for mechancial engineering,2013,37(11):26~30
柳艳,李贵茂,殷秋菊,周超梅,于军.拉拔变形程度和电磁搅拌对Cu-6%Ag合金组织及性能的影响[J].机械工程材料,2013,37(11):26~30
被引情况:
【1】
王 冠,寇琳媛,李落星, "基于数值模拟的铝合金薄壁管拉拔工艺优化",机械工程材料
39, 35-42(2015)
参考文献
【1】
BEVK J, HARBISON J P, BELL J L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites[J].J Appl Phys, 1978, 49: 6031-6035.
【2】
RAABE D, MATTISSEN D. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite[J].Acta Metallurgica Inc, 1998, 46(16): 5973-5984.
【3】
LIU J B, ZENG Y W, MENG L. Crystal structure and morphology of a rare-earth compound in Cu-12 wt%Ag[J].Journal of Alloys and Compounds, 2009, 468: 73-76.
【4】
RAABE D, MIYAKE K, TAKAHARA H. Processing, microstructure and properties of ternary high-strength Cu-Cr-Ag in situ composites[J].Mater Sci Eng: A, 2000, 291(1/2): 186-197.
【5】
GAO H Y, WANG J, SUN B D. Effect of Ag on the thermal stability of deformation processed Cu-Fe in situ composites[J].Journal of Alloys and Compounds, 2009, 469(1/2): 580-586.
【6】
HONG S I, SONG J S. Strength and conductivity of Cu-9Fe-1.2X (X=Ag or Cr) filamentary microcomposite wires[J].Metall Mater Trans: A, 2001, 32(4): 985-991.
【7】
SUN S J. Structures and residual stresses of Cr fibers in Cu-15Cr in-situ composites[J].Metall Mater Trans: A, 2001, 32 (5): 1225-1232.
【8】
GAO H Y, WANG J, SUN B D. Microstructure and strength of Cu-Fe-Ag in situ composites[J].Mater Sci Eng: A, 2007, 452/453: 367-373.
【9】
MORRIS D G, MUNOZ-MORRIS M A. New model for strengthening by dislocation nucleation in nanoscalein situ composite microwires[J].Scr Mater, 2008, 59: 838-841.
【10】
MATTISSEN D, RAABE D, HERINGHAUS F. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ composite[J].Acta Mater, 1999, 47(5): 1627-1634.
【11】
DEW-HUGHES D. High strength conductor for pulsed magnets[J].Mater Sci Eng: A, 1993, 168(1): 35-40.
【12】
ASANO T, SAKAI Y, OSHIKIN M, et al. Cu-Ag wire pulsed magnets with and without inernal reinforcement[J].IEEE Trans Magn, 1994, 30(4): 2106-2109.
【13】
HERLACH F. Innovations and trends in magnet laboratories and techniques[J].Physica B, 2001, 294/295: 500-504.
【14】
ROSSEEL K, HERLACH F, BOON W, et al. Multi-composite wires for pulsed field coils[J].Physics B, 2001, 294/295: 679-683.
【15】
SAKAI Y, SCHNEIDER-MUNTAU H J. Ultra-high strength high conductivity Cu-Ag alloy wires[J].Acta Mater, 1997, 45(3): 1017-1023.
【16】
李贵茂, 王恩刚, 张林, 等.形变原位Cu-Ag复合材料的研究进展[J].材料导报, 2010, 24(3): 80-84.
【17】
李贵茂, 王恩刚, 张林, 等.强磁场对Cu-25Ag合金凝固、拉拔组织及导电性能的影响[J].稀有金属材料与工程, 2012, 41(4): 701-706.
【18】
刘喜波, 董企铭, 刘平, 等.铜-银-铬系合金时效性能研究[J].机械工程材料, 2005, 29(10): 20-23.