基于传统电阻加热烧结过程的建模与模拟,通过对粉末注射成形材料微波烧结过程的机理分析,结合电磁场、热力学以及连续介质力学原理,确定了微波烧结全过程的数学模型和模拟方法;通过建立合理的力学模型和控制方程,采用COMSOL Multi-physics软件模拟微波烧结过程,并将模拟结果与试验结果进行了对比。结果表明:氧化锆粉末成形件在微波烧结初始阶段加热缓慢,当温度升至400 ℃之后,成形件内部温度持续急剧升高;当加热至1 360 ℃时,烧结件的相对密度高达92%,可满足粉末烧结工艺要求;建立的数学模型能有效模拟微波烧结过程中粉末成形材料内部的电场、温度场分布以及密度的衍化过程。
所属栏目
物理模拟与数值模拟教育部博士点基金资助项目(20110184110017)
收稿日期
2013/7/42014/5/5
作者单位
石建军:西南交通大学力学与工程学院,成都 610031Femto-ST 研究所应用力学实验室,法国贝桑松 25000
成志强:西南交通大学力学与工程学院,成都 610031
GELIN J C:粉末注射成形材料微波烧结过程的有限元模拟
柳葆生:西南交通大学力学与工程学院,成都 610031
BARRIERE T:粉末注射成形材料微波烧结过程的有限元模拟
备注
石建军(1985-),男,广西梧州人,博士研究生。
引用该论文:
SHI Jian-jun,CHENG Zhi-qiang,GELIN J C,LIU Bao-sheng,BARRIERE T.FEM Simulation of Microwave Sintering Process for Powder Injection Molding Materials[J].Materials for mechancial engineering,2014,38(11):84~89
石建军,成志强,GELIN J C,柳葆生,BARRIERE T.粉末注射成形材料微波烧结过程的有限元模拟[J].机械工程材料,2014,38(11):84~89
参考文献
【1】
陈鼎,李林,陈振华.金属材料微波烧结的研究现状[J].机械工程材料,2012,36(4):7-10.
【2】
GUO Y, YI J, LUO S, et al. Fabrication of W-Cu composition by microwave infiltration[J].Journal of Alloys and Compounds, 2010, 492: L75-L78.
【3】
SHON I J, KIM B R. Initial stage sintering of binderless tungsten carbide powder under microwave radiation[J].Ceramics International, 2011,37(2):505-512
【4】
TOMPSETT G A, CONNER W C, YNGVESSON K S. Microwave synthesis of nanoporous materials[J].Chemphyschem, 2006,7(2):296-319.
【5】
晋勇,薛屺,汤小文,等.纳米金属陶瓷材料的微波烧结工艺研究[J]. 机械工程材料,2004,28(12):49-51.
【6】
王美娜,丘泰,沈春英.钛酸镁基介电陶瓷的微波烧结[J].机械工程材料,2009,33(1):23-25.
【7】
ROY R, AGRAWAL D, CHENG J, et al. Full sintering of powdered-metal bodies in a microwave field[J].Nature,1999,399:668-670.
【8】
KONG X, QUINARD C, BARRIERE T, et al. Mixing and characterisation of stainless steel 316L feedstock[J].International Journal of Material Forming,2009,2(1):709-712.
【9】
QUINARD C, BARRIERE T, GELIN J C. Development and property identification of 316L stainless steel feedstock for PIM and μPIM[J].Powder Technology,2009,190(1/2):123-128.
【10】
LARSEN G, CHENG Z Q, BARRIERE T,et al. Modeling and numerical simulation of biphasic fluid flow[J]. Steel Research International, 2010,81(9):1458-1461.
【11】
SONG J, BARRIERE T, LIU B, et al. Experimental and numerical analysis on the sintering behaviours of injection moulded components in 316L stainless steel powder[J].Powder Metallurgy,2010,53(4):295-304.
【12】
ISKANDER M D, ANDRADE A O N M. FDTD simulation of microwave sintering of ceramics in multimode cavities[J].IEEE Trans Microwave Theory and Techniques,1994,42(5):793-799.
【13】
KOZLOV P V, RAFATOV I R, KULUMBAEV E B, et al. On modeling of microwave heating of a ceramic material[J].Journal of Physics D: Applied Physics,2007,40(9):2927-2935.
【14】
LASRI J, RAMESH P D, SCHACHTER L. Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor[J].Journal of American Ceramic Society,2000,83(6):1465-1468.
【15】
ZHANG B, GASIK M. Stress evolution in graded materials during densification by sintering processes[J]. Computational Materials Science,2002,25(1/2):264-271.
【16】
QUINARD C, SONG J, BARRIERE T, et al. Elaboration of PIM feedstocks with 316L fine stainless steel powders for the processing of micro-components[J].Powder Technology,2011,208(2):383-389.
【17】
SONG J, BARRIERE T, GELIN J C, et al. Powder injection molding of metallic and ceramic hip implants[J].International Journal of Powder Metallurgy,2009,45(3):25-34.
【18】
SANTOS T, VALENTE M A, MONTERIO J, et al. Electromagnetic and thermal history during microwave heating[J].Applied Thermal Engineering,2011,31(16):3255-3261.
【19】
BOUVARD D, CHARMOND S, CARRY C P. Mutiphysics simulation of microwave sintering in a monomode cavity[C]//12th Seminar Computer Modeling in Microwave Engineering & Applications.Grenoble, France:[s.n],2010.
【20】
GERMAN R M. Sintering theory and practice [M].[S.l.]:Wiley-Interscience Publication,1996.
【21】
CHARMOND S, CARRY C P, BOUVARD D. Densification and microstructure evolution of Y-tetragonal zirconia polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity[J].Journal of the European Ceramic Society,2010,30(6):1211-1221.